Sinx+cosx=1;⇔ sinx=1-cosx ⇔ sinx =2sin²(x/2) ⇔ 2sin(x/2)cos(x/2)-2sin²(x/2)=0 ⇔2sin(x/2)[cos(x/2)-sin(x/2)]<span>=0
1) </span>sin(x/2) = 0 x/2=πn x=2πn n∈Z
2) cos(x/2)-sin(x/2)=0 tg(x/2)=1 x/2=π/4 +πn <span>n∈Z</span>
sin3x+cos3x =√ 2.
sin3x+cos3x = корень из 2.
С ЭТИМ ...ЧУТЬ ПОЗЖЕ.
1. 2x²-3 =0
2х²=3
х²=1,5
х=±√1,5
2. 16x² = 49
х²=49/16
x=±7/4
3. x² - 2x - 35 =0
D=4+140=144=12²
x=(2+12)/2=7
x=(2-12)/2=-5
X(3.5+1) = 180
4.5*x = 180
x = 180/4.5
x = 40
Условие бесконечного числа решений (совпадения прямых, которые выражаются алгебраически как уравнения системы) такое:
4/2=a/-3 ⇒ a=-6 при этом обязательно должно быть 4/2=10/5=-6/-3, что выполняется.
Мы получили первое уравнение 4х-6у=10 если обе стороны поделить на 2 то получим 2-е уравнение 2х-3у=5, то есть две прямые совпали.
Ответ: -6