3.6*10³\9*10⁻¹=3.6*10*10³\9=<span>36*10</span>³<span>\9= 4*10</span>³=4000
÷(a_{n}) a_{10}= 10; a_{15}= -80
a_{n}=a_{1}+d(n-1)
a_{10}=a_{1}+9d=10
a_{15}=a_{1}+14d=-80
Получается система в которой
\left \{ {{a_{1}+9d=10} \atop {a_{1}+14d=-80}}
Вычитаем из второй первую (так удобнее чтобы найти разницу;разность)
a1-a1; 14-9d; -80+10 (-80-(-10))
Остается 5d=-70
d= \frac{-70}{5}
d=-14
Чтобы число делилось на 5, оно должно заканчиваться на 0 или 5
рассмотрим те числа, которые заканчиваются на 0
тогда при условии: <span>каждое число не должно содержать одинаковых цифр
составляем числа:
на первом месте может стоять любая из цифр 1,5,8,9 - 4 варианта
на втором месте - любая из оставшихся ТРЕХ, (одну забрали на первое место) - 3 варианта
на третьем месте стоит 0
Всего таких чисел 4*3*1=12
</span>рассмотрим те числа, которые заканчиваются на 5
тогда на первое место мы выберем любое из 1,8,9 (0 на первом месте стоять не может)
на второе место выберем из оставшихся двух и 0- всего 3 варианта
значит чисел всего 3*3*1=9
Тогда ВСЕГО 12+9=21
Доброго времени суток! Решение данного задания предоставлено на листе А4 чёрными чернилами, надеюсь моя помощь поможет Вам правильно усвоить данный предмет.
С уважением, SkOrPiOnUs!
А) 2а-ас-2с+с² = (2а-ас)+(-2с+с²) = а(2-с)-с(2-с) = (2-с)(а-с)
б) 5а-5b-xa+xb-b+a = (5a-5b)+(-xa+xb)+(-b+a) = 5(a-b)-x(a-b)+(a-b) = (a-b)(5-x+1) = (a-b)(6-x)