проще простого, (нарисуй рисунок для наглядности), предположим, что АВ и О1О2 не перпендикулярны, значит отрезки АО1 и ВО1 не равны, а такого быть не может, т.к. О1А и О1В радиусы одной окружности, соответсвенно делая вывод из всего вышесказанного получаетсy, что АВ перпендикулярно О1О2 в любом случае
Площадь заштрихованного кольца, изображенного на клетчатой бумаге (см.рис.) равна 7. Найдите площадь большого круга.
----------
Обозначим радиус малого круга r, большого - R.
Примем длину стороны клетки равной а.
По рисунку легко определить, что r=3а.
<u> Длину </u><u>R</u><u> необходимо вычислить</u>, т.к. по клеткам на его вертикальной и горизонтальной оси нет целочисленных пересечений с границей верхнего круга. Но на внешней окружности есть такая точка. Обозначим её А. Точку пересечения отрезка, проведенного параллельно горизонтальному диаметру большего круга, с вертикальным радиусом меньшей окружности – В, центр окружностей – О.
АВ=4а, ОВ=а
Из прямоугольного ∆ АОВ по т.Пифагора
R²=OB²+OA²=a²+16a²=17a²
Площадь кольца равна разности площадей большого и малого кругов.
πR²-πr²=7
π17a²-9πa²=7
8πa²=7⇒
πа²=7/8
π17a²=17•7/8=119/8 (ед. площади)=14,875 (можно округлить до 15)
---------
При решении задач по рисунку с кругом на клетчатом фоне нужно помнить, что нередко радиус нужно вычислить.
Если центр окружности, описанной около треугольника, лежит на его стороне, то треугольник прямоугольный, а центр окружности лежит на его гипотенузе.
∠А=25°, ∠С=90°, ∠В=90-25=65° - это ответ.