Из свойств секущей CD*CA = CE*CB следует, что CD/CB = CE/CA = (обозначим) = х;
Значит треугольники CDE и ABC подобны. Уже можно сказать, что BC = 2*CD, но для [...] точности, вспомним, что SABC = AB*BC*(sin(C)/2); SCDE = CD*CE*(sin(C)/2) = x^2*AB*BC*(sin(C)/2) = x^2*SABC, откуда х = 1/2;
Поскольку BD перпендикулярно AC, х = 1/2 = sin(CBD); угол CBD = 30 градусам.
В третьей задаче отпустил высоту тогда у нас получится прямоуголник как на чертеже. Если что нибудь вдруг не понятно спрашивайте.
1.ΔСАМ-равнобедренный, АС-основание, угол САМ=углу МСА=68⇒угол МСВ=90-68=22
ΔВМС-равнобедренный, ВС-основание, угол МВС=углу МСВ=22
Ответ: угол МВС=22
2.ΔABD-равнобедренный, АD-основание, угол ВАD=углу АDB=70
угол BDC=180-70=110(смежные углы)
DF-медианна, биссектриса и высота, т.к. ΔBDC-равнобедренный(BD=DC)⇒угол BDF=углу FDC=110/2=55
Ответ: угол FDC=55
3.АМ=МС=12/2=6, т.к. ВМ-медианна, ΔАВО=ΔАОМ( О- точка пересечения биссектрисы и медианны) по катету и углу(АО-общий катет, угол ВАО=углу ОАМ, т.к. АD-биссектриса)⇒АВ=АМ=6, как соответствующие элелемты равных Δ
ответ: АВ=6