Подкоренное выражение для арифметического квадратного корня должно быть неотрицательным. То есть выражение √(х(х² - 4)) имеет решения ( и смысл, разумеется..))) при:
х(х² - 4) ≥ 0
х(х - 2)(х + 2) ≥ 0
Решаем системы {x ≥ 0 {x ≤ 0 {x ≤ 0 {x ≥ 0
{x ≥ 2 {x ≤ 2 {x ≥ 2 {x ≤ 2
{x ≥ -2 {x ≥ -2 {x ≤ -2 {x ≤ -2
[2; ∞) [-2; 0] нет реш-я нет реш-я
Таким образом, подкоренное выражение будет неотрицательным в промежутке х∈[-2; 0] U [2; ∞)
Это называется "Найти Область Определения Функции", то есть значения, которые может принимать х.
Образующиеся при этом значения у составляют "Множество Значений Функции"
Чтобы уравнение имело 2 одинаковых действительных корней нужно что бы дискриминант был равен 0
Х+у=4
-х+2у= -2
х-х+у+2у=4-2
3у=2
у=2/3
х+2/3=4
х=4-2/3
х=12/3-2/3
х=10/3=3 1/3
(3 1/3;2/3)