Пусть МО⊥(АВС).
Проведем ОН⊥AD и ОК⊥АВ.
ОН и ОК- проекции наклонных МН и МК на плоскость прямоугольника, тогда и МН⊥AD, МК⊥АВ по теореме о трех перпендикулярах.
∠МАО = φ - угол между наклонной АМ и плоскостью прямоугольника,
∠МАН = ∠МАК = α = 50° - угол между наклонной АМ и сторонами AD и АВ прямоугольника.
ΔМАН
= ΔМАК по гипотенузе и острому углу (АМ общая, ∠МАН = ∠МАК = α), значит
АК = АН, и значит АКОН - квадрат и АО - его диагональ, а следовательно и
биссектриса угла BAD.
Стоит запомнить, что наклонная,
проведенная через вершину угла, лежащего в плоскости, и образующая
равные углы с его сторонами, проецируется на биссектрису этого угла.
Пусть а - сторона квадрата АКОН.
Тогда АО = а√2, как диагональ квадрата.
ΔАМН: АМ = AН / cosα = a / cos α
ΔAMO: cos φ = АO / AM = a√2 / (a / cos α) = √2cos α
cosφ = √2cos50°
φ = arccos(√2cos50°)
проще простого, (нарисуй рисунок для наглядности), предположим, что АВ и О1О2 не перпендикулярны, значит отрезки АО1 и ВО1 не равны, а такого быть не может, т.к. О1А и О1В радиусы одной окружности, соответсвенно делая вывод из всего вышесказанного получаетсy, что АВ перпендикулярно О1О2 в любом случае
Vц=<span>πR^2H</span>
<span><span>R -1/2 </span></span>
<span><span>R -1/2 (диагонали квадрата) = 4,5 корней из 2 </span>
<span>R^2 = 40,5 </span>
<span>V=40,5*π*3/π=121,5</span></span>
Ответ: 121,5
т.к. а и б перпендикулярны, значит они паралельны. а если прямая с пересекает а, то и пересекает б
Середина отрезка это точка которая делит отрезок на две равные части.