Рисунок так себе,но главное решение)
Могу дать решение на задачу 3:
Тут всё достаточно просто, вот смотри:
По условию задачи, диагональ трапеции разбила её на два треугольника, у которых средние линии равны 5 см и 9 см. Это понятно.
Дальше:
Поскольку средняя линия равна половине основания, то, соответственно, основания этих треугольников равны, поэтому приведу следующие вычисления:
5*2=10 см.
9*2=18 см.
Итак, основания этих треугольников являются основаниями самой трапеции, а это и значит, что основания трапеции будут являться<span> 10 см. и 18 см. </span>
Т.к О цент АС, то 0,2 + 0,2 = 0,4
<span>Площадь ромба равна половине произведения его диагоналей.Построим ромб ABCD, диагонали AC и BD, центр O.S = (BD * AC) / 2Надо найти BD и AC (диагонали ромба)Из условия, о том, что диагонали соотносятся 3:4, обозначаем их как 3x и 4x.Тогда ВО=2x, АО=1,5x.Треугольник ABO, теорема Пифагора: АВ^2=ВО^2+АО^220^2 = (2x)^2 + (1,5x)^2400 = 4x^2 + 2,25x^2400 = 6,25x^2x^2 = 400 / 6,25x^2 = 64x = 8BD = 4x = 32AC = 3x = 24S = (32 * 24) / 2S = 384 см</span>