(5²)^2√3cos(x+3π/2)=(5^-1)^cos(x+π)
5^4√3sinx=5^cosx
4√3sinx=cosx/cosx
4√3tgx=1
tgx=1/4√3=√3/12
x=arctg√3/12+πk,k∈z
Ответ: (x+y) (4-z)
Объяснение: 4x+4y-z(x+y) = 4(x+y)-z(x+y) = (x+y) (4-z)
Так как b5=b4*q и b6=b4*q², где q - знаменатель прогрессии, то по условию:
b4+b4*q=24,
b4*q²-b4=24
Из первого уравнения находим b4=24/(1+q). Подставляя это выражение во второе уравнение, приходим к уравнению
24*(q²-1)/(1+q)=24*(q-1)=24, откуда q-1=1 и q=2. Тогда b4=24/(1+2)=8,
b1=b4/q³=8/8=1, Sn=1*(2^n-1)/(2-1)=2^n-1=127, 2^n=128, n=log_2(128)=7. Ответ: n=7.
1) Корень 3-й степени, значит под знаком корня может быть отрицательное число. Но на 0 делить нельзя.
Область определения:
2) Тут снова дробь. На 0 делить нельзя.
Область определения: