Ответ:
Объяснение: 1) S=∫₋₃⁻¹(-x²-2x+5-(-x²-6x-7))dx+∫₋₁¹(-x²-2x+5-2x)dx=
=∫₋₃⁻¹(4x+12)dx+∫₋₁¹(-x²-4x+5)dx=4(1/2x²+3x)║₋₃⁻¹+(-1/3x³-
-4·1/2x²+5x)║₋₁¹=4·((1/2·(-1)²+3·(-1)-1/2·(-3)²-3·(-3))+(-1/3·1³-2·1²+5·1-
-(-1/3)·(-1)³+2·(-1)²-5·(-1))=4·(1/2-3-9/2+9)+(-1/3-2+5-1/3+2+5)=8+9-2/3=
=16+1/3 (ед²)
2) S=∫₋₁¹(2x+5-x²+2x)dx+∫₁³(x²-6x+12-x²+2x)dx=∫₋₁¹(-x²+4x+5)dx+
+∫₁³(-4x+12)dx=((-1/3)x³+4·1/2·x²+5x)║₋₁¹+((-4)·1/2·x²+12x)║₁³=
=(-1/3+2+5-1/3-2+5)+(-18+36+2-12)=10-2/3+8=17+1/3 (ед²)
Ответ: 520$ владелец ломбарда заплатил за лот №3.
Решение в приложении.
(a-3√a)/(a-9)=(√a^2-3√a)/(√a-3)(√a+3)=√a(√a-3)/(√a-3)(√a+3)=√a/(√a+3)
Ответ: по течению - 20 км/ч, против течения - 16 км/час.
Объяснение: пусть х - собст. скорость лодки, у - скорость течения. За 2 часа по течению лодка пройдет 2(х + у) км, а за 5 часов против течения - 5(х - у) км. Так как вместе она проплыла 120 км, имеем первое уравнение: 2(х+у) + 5(х - у) = 120.
За 7 часов против течения лодка проплыла 7(х - у) км, за 3 часа по течению - 3(х + у) км. Так как 7(х - у) больше чем 3(х + у) на 52, имеем второе уравнение: 7(х - у) - 52 = 3(х + у).
Объединяем оба уравнения в систему (см. ниже). Решая ее, получаем: х = 18 - собст. ск. л., у = 2 - ск. теч. реки. Тогда скорость по течению реки равна 18 + 2 = 20(км/ч), а против течения - 18 - 2 = 16(км/ч).