MB делит ABC на 2 Египетских треугольника, следовательно MB =4. Рассмотрим треугольник SMB: он равнобедренный прямоугольный, гипотенуза - SM, угол B = 90°, угол S = M = 45°. Ответ: 45°
Да,в точке (-1; 0).........
Отрезки касательных, проведенных к окружности из одной точки равны.
Р=АВ+АС+ВС=AB+(AB+r+r)=2AB+2r=24+4=28
р=Р/2=14
S=p·r=14·2=28 кв. ед.
Назовем высоту СД. Тогда ВД - проеция катета ВС, а АД - проекция катета АС на гипотенузу. Тогда АД = 36+64 = 100. Примем угол А за х. Тогда угол АСД = 180-90-х=90-х. Отсюда ВСД=90-АСД=90-(90-х)=х. Отсюда угол В=180-ВСД-ВДС=180-х-90=90-х. Следовательно, треугольники АВС, АСД и ВСД пропорциональные (по 3-м углам). Тогда АС/АВ=АД/АС. Тогда АС=корень из (АВ*АД)=корень из (100*64)=80. По теореме Пифагора СВ=корень из (АВ^2-АС^2)= корень из (10000-6400)=60. Периметр = 100+80+60=240