<span><em>Диагональ ВD <u>делит прямоугольник на два </u>равных треугольника</em>. Следовательно, P(ВСD)=P(ABD)=21см </span>
Сумма периметров этих треугольников 2•21=42 см
Диагональ ВD входит в эту сумму дважды, но <em><u>не входит</u> в периметр прямоугольника АВСD,</em>
<span> Следовательно, <em>Р</em>(<em>АВСD</em>)=42-2•8=<em>26</em> см.</span>
1) Высота, проведённая к основанию, является также медианой.
AE = EC = 12√5 : 2 = 6√5
2) Рассмотрим прямоугольный ΔABE.
По теореме Пифагора AB² = AE² + BE²
14² = (6√5)² + BE²
196 = 180 + BE²
BE² = 16
BE = 4
Ответ: ВЕ = 4.
Треугольник АВС, основание АС, Д-середина АС, АД=ДС, ДН параллельно АВ (Н на ВС), ДН-средняя линия треугольника, ВН=НС, МН параллельно АС (М на АВ), МН -средняя линия треугольника, параллелограмм АМНД, проводим МД - соединяет середины сторон АВ и АС, МД - средняя линия треугольника и параллельна ВС = диагонали параллелограммаАМНД, три средние линии треугольника делят его на 4 равных треугольника, площади которых =1/4 площади АВС, но площадьАМД+площадьМДН=1/4 площади АВС+1/4площади АВС=1/2 площади АВС=площадьАМНД, площадь АМНД/площадьАВС=1/2