Ответ:
Равносторонний ΔАВС (АВ=ВС=АС=а)
радиус описанной окружности R=2√3
прямая ЕК, параллельная ВС, делит высоту АН в отношении АД/ДН=1/2 (Д - точка пересечения ЕК и АН)
нужно найти ЕК
R=а/√3, откуда сторона а=R√3=2√3*√3=6
высота АН=а√3/2=6√3/2=3√3
АД=АН/3=√3
! :
АД/АН=ЕК/ВС
ЕК=АД*ВС/АН=√3*6/3√3=2
Объяснение:!-Т.к. прямая, пересекающая две стороны треугольника, и параллельная третьей, отсекает треугольник, подобный данному, то значит, что ΔАЕК подобен ΔАВС
В прямоугольном треугольнике катет, лежащий против угла 30 градусов = 1/2
гипотенузы.
Доказательство.
Дано тр. АВС. Угол С- прямой
Доказать: СВ = 1/2 АВ
1)Угол В = 180 - 90 - 30 = 60 гр.(по теореме о сумме углов треуг.
2) Проведём из вершины угла С медиану СF, которая равна по определению медиана, проведённая к гипотенузе равна половине гипотенузы, то треугольники CAF и CBF- равнобедренные. По доказанному CF=AF=BF
Следовательно, у треуг. CFB углы при основании равны:∠B=∠BCF=60º.Так как сумма углов треугольника равна 180º, то в треугольнике BFC∠BFC =180º -(∠B+∠BCF)=60º.Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.Значит, все его стороны равны и
Высота параллелограмма равна h = √2 * sin 45° = √2 * (√2/2) = 2/2 = 1.
Тогда So = 1*3√2 = 3√2. Периметр основы Р = 2*√2 + 2*3√2 = 8√2.
По условию задачи Sбок = 4So = 4*3√2 = 12√2.
Площадь боковой поверхности призмы равна Sбок = Р*Н.
Отсюда высота призмы Н = Sбок / Р = 12√2 / 8√2 = 12/8 = 3/2 = 1,5.
16 cм. Решение нужно?
Для удобства обозначу углы буквами!
1) Только угол b может быть равен 120 градусам ( углы при основании равнобедр. треугольника равны).
2) Мы знаем, что сумма всех углов любого треугольника равна 180 градусам.
Угол A = угол C = 180 гр. - 120 гр. : 2 = 30 градусов
3) Мы знаем, что напротив угла в 30 градусов лежит катет равный половине гипотенузы (теорема).
Против угла A= 30 градусам, лежит катет равный 8 см.
Значит гипотенуза AB = 8 * 2 = 16 см.
Пусть один угол х, тогда другой угол (х-26). Сумма всех углов равна 180. х+х-26+90=180; 2х=116; х=58. Второй угол - 58-26=32