16:
По т Пифагора ВК^2=ВС^2+СК^2
ВК^2=8^2+6^2
ВК=корень 64+36
ВК=корень из ста
ВК=10
Вк - диаметр => R=10/2=5
17:
угол С=180-54-82=
Плоскость параллеограмма АВСD пересекается с плоскостью альфа по прямой, соединяющей середины сторон АВ и СD.
<span>По условию ВК=МС; ВК|| МС.</span>
<em>Если две стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм</em>.<span>
⇒КМ || ВС
</span><em>Через две параллельный прямые можно провести плоскость, притом только одну.
</em>Так как ВС не лежит в плоскости альфа, то АD, как сторона параллелограмма, равная и параллельная ВС и лежащая в плоскости АВСD, тоже не лежит в плоскости альфа, в противном случае через ВС и АD можно было бы провести плоскость, отличную от плоскости АВСD.<span>
ВС || КМ ⇒ КМ || АD.
</span><span><em>Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в плоскости, то она параллельна этой плоскости.</em> </span>
AD параллельна КМ ⇒ параллельна плоскости <span>α, что и требовалось доказать. </span>