7) 1953125
4
1953125
512
0.0000000001
1\16807
16807
1\4096
4096
1\390625
360625
Рассмотрим предложенные квадратные уравнения:
В первом уравнении а=-1, т.е. меньше 0, значит ветви этой параболы направлены вниз;
во-втором уравнении а=1, т.е. больше 0, значит ветви направлены вверх.
Возможны два варианта:
1) Оба графика не пересекают ось х как на рисунке 1.
2) Оба графика пересекают ось х дважды, как на рисунке 2.
Рассмотрим каждый вариант:
1) Чтобы графики функций не пересекали ось х, уравнения функций не должны иметь корней. Для квадратного уравнения это означает, что дискриминант меньше нуля.
у=-х2+2рх+3
D1=(2p)2-4*(-1)*3=4p2+12<0
4p2+12<0
4p2<-12
p2<-3, это невозможно (квадрат числа всегда больше либо равен нулю).
Значит вариант первый отпадает (D2 для уравнения у=х2-6рх+р можно даже вычислять).
2) Рассмотрим второй вариант, для второго варианта дискриминант должен быть строго больше нуля:
у=-х2+2рх+3
D1=(2p)2-4*(-1)*3=4p2+12>0 => p2>-3, это неравенство выполняется для любого p
у=х2-6рх+р
D2=(-6p)2-4*1*p=36p2-4p>0, решим это неравенство.
36p2-4p>0
4(9p2-p)>0
9p2-p>0
p(9p-1)>0
Чтобы это неравенство выполнялось должно быть:
1) или p>0 и 9p-1>0
2) или p<0 и 9p-1<0
1) p>0 и p>1/9 => p>1/9
2) p<0 и p<1/9 => p<0
Ответ: p=(-∞;0)∪(1/9;+∞)
Log2x^2(x-1)^2 + 1/log2x^2(x-1)^2 ≤ 2
Обозначим: log2x^2(x-1)^2 = t
t + 1/t - 2 ≤ 0
(t^2 +1 - 2t)/t ≤ 0
(t-1)^2/ t ≤ 0 ( числитель ≥ 0, значит t < 0)
log2x^2(x-1)^2 < 0
вот теперь надо рассмотреть требования: 1) 2х^2 ≠ 1, x^2 ≠ 1/2, x ≠
2) х ≠ 0
теперь какие могут быть варианты: а) 2х^2 > 1, x^2 > 1/2,
(-беск.;-) и ( ; + беск.)log2x^2(x-1)^2 < 0
(x-1)^2 <1,
0<x<2 б) 0< 2х^2<1, 0< x^2 < 1/2,
(
-;)log2x^2(x-1)^2 < 0
(x-1)^2 > 1,
(-беск.;0) и ( 2; + беск.)
из каждой пары ответов надо выбрать решения.
Сторона первого квадрата √72
Сторона второго квадрата √2
√72:√2=√36
√36=6
Ответ: в 6 раз сторона первого квадрата больше стороны второго квадрата.