/_А+/_С=180-116=64
/_А=/_С=64:2=32
/_В=180-(32+32)=116
S= (a+b)*h /2= (10+8)*8 / 2 = 72
Параллелограмм ABCD.
По теореме косинусов в треугольнике АВD квадрат стороны ВD (диагональ параллелограмма) равен: BD² = AB²+AD²-CosA.
По теореме косинусов в треугольнике АCD квадрат стороны AC (диагональ параллелограмма) равен: AC² = AD²+DC²-Cos(180°-A). Заметим, что DC=АВ =2(стороны параллелограмма), угол <D = 180° - <A (углы при основании параллелограмма) и Cos(180°-A)= -CosA. Имеем:
BD² = AB²+AD²-CosA = 20-16CosA.
AC² = AD²+DC²-Cos(180°-A) = 20+16CosA.
BD/AC = √3/√7(дано) Тогда BD²/AC² =3/7. Подставляем значения и получаем:
<span>CosA = 0,5. Значит <A = 60°. Формула площади параллелограмма: S=a*b*SinA = 8*0,866 = 6,928.</span>
1)Угол BCA бцдет равен 100 градусам, тк он смежный с углом BCE (180-80=100)
угол ABC = 180-100-40=40 градусов.
Биссектрисса(СD) делит угол BCE пополам => 2 угла по 40 градусов.
<span>AB параллельна CD, потому что угол BCD= углуBAC (эти углы накрест лежащие)
2)</span><span>AO=MH, так как ОС и ЕН - медианы треугольников ABC и MKE. Так как углы С и Е равны и ВС=КЕ, то углы АСО и МЕН также равны. Так как углы В и К равны, то соответственно углы А и М равны, из этого следует, что треугольники АСО и МЕН равны по стороне и двум прилежащим к ней углам.</span>