Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ:
∠АDВ=180°-60°-90°=30°
Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°.
При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60°
⇒ АВСD - равнобедренная трапеция(по признаку)
Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120°
∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120°
Ответ: 60°, 60°, 120°, 120°
угFDB=28°, BFD=90°, высчитываем угол FBD(180°-90°-28°)=62°
угFDB и. угBDC- смежные, значит высчитываем угол ВДС (180°-28°)=152°. Так как ∆ВДС равнобедренный (в прямоугольном ∆ медиана, опущенная на гипотенузу, всегда равна половине гипотенузы), ВД=ДС, то угол ДВС=ДСВ. т.е. 2ДВС=152°/2=28°. Угол ДВС=ДСВ=28°/2=14°
Из ∆АВС, угол А=180°-90°-14°=76°
Меньший из углов С=14°
Рассмотрим треугольники MDF и DFE.
1). Угол MDF=углу FDE - по условию.
2). Угол DFM=углу DFE - по условию.
3). DF- общая сторона.
Значит, треугольники равны по второму признаку равенства треугольников, а это по стороне и двум прилежащим к ней углам. Следовательно, МД=ДЕ.
Ответ:
CN=CК+КN=BA+2/3 КA = a - 2/3 b.
MN=MК+КN=1/2 BA-2/3 КA=1/2 a - 2/3 b.