А.
6y-9-3.4>4y-2.4
2y>10
y>5
б.
x≥6
√(15 - √11)^2 + √(2 - √11)^2 = x;
15 - √11 + 2 - √11 = x;
17 - 2√11 = x;
(17 - 2√11)^2 = x^2;
289 - 2 * 11 = x^2;
267 = x^2;
x = √267;
x = ~16,34013463
Решить <span> уравнения 4 * 16^sin^2x - 6 * 4^cos2x = 29
и найт</span>и все корни уравнения, принадлежащие отрезку [3π/2; 3π<span>] </span>
-------------------------------------------
4* (4² ^sin²x) -6*4^cos2x = 29⇔ 4* 4 ^(2sin²x) -6*4^cos2x = 29 ⇔
4* 4 ^ (1 -cos2x) -6*4^cos2x = 29 ⇔4* 4¹*4^( -cos2x) - 6*4^cos2x = 29 ⇔
4* 4 * 1 / ( 4^cos2x) - 6*4^cos2x = 29 ; * * * можно замена :t =4^cos2x * * *<span>
6* (4^ cos</span>2x)² +29* (4^ cos2x) -16 =0 ;
* * * (4^ cos2x)² +(29/6)* (4^ cos<span>2x)-8/3=0 * * * </span>
a) 4^cos<span>2x = -16 /3 < 0 не имеет решения </span><span> ; </span><span>
b) 4^cos</span>2x = 1/2 ⇔2 ^(2cos2x) = 2⁻¹ ⇔2cos2x = -1 ⇔ <span>cos2x = -1/2 .
</span>⇔2x = ±π/3 +2πn ,n ∈Z ;
x = ±π/6 +πn ,n ∈Z .
* * * * * * *
Выделяем все корни уравнения, принадлежащие отрезку [3π/2; 3π] .<span>
----
3</span>π/2 ≤ - π/6 +πn ≤ 3π ⇔ 3π/2+π/6 ≤ πn ≤ 3π+π/6 ⇔ 5/3 ≤ n ≤ 19/6⇒
n =2 ; 3 .
x₁= - π/6 +2π =11π/6 ; x₂ = - π/6 +3π =1<span>7π/</span>6 .
-----
3π/2 ≤ π/6 +πn ≤ 3π ⇔3π/2 -π/6 ≤ πn ≤ 3π -π/6 ⇔4/3 ≤ n ≤ 17/6⇒
n=2
x ₃ = π/6 +2π=13<span>π /6 .
</span>
4x - (x^2 - 2x + 1) ≥ 7
4x - x^2 + 2x - 1 ≥ 7
- x^2 + 6x - 8 ≥ 0
x^2 - 6x + 8 ≤ 0
x^2 - 6x + 8 = 0
D = 36 - 32 = 4
x1 = ( 6 + 2)/2 = 8 /2 = 4;
x2 = ( 6 - 2)/2 = 4/2 = 2
x ∈ [ 2; 4 ] = { 2; 3 ; 4 }
Ответ
3
Y=√(200+4x)/(x+9)
200+4x≥0 4x≥-200 |÷4 x≥-50 ⇒ x∈(-50;+∞)
x+9≠0 x≠-9
Ответ: 4) бесконечно много.