Так как центральный ∠AOB и вписанный ∠ACB опираются на одну дугу, ∠AOB = 2∠ACB = 130°.
Углы ∠AOD и ∠AOB - смежные ⇒ ∠AOD = 180° - ∠AOB = 180° - 130° = 50°.
Ответ: 50°
Рассмотрим треугольник AMC, MD высота(т.к. Это равнобедренный треугольник и углы AMD и CMD равны)
=> MD перпендикулярно AC. Рассмотрим треугольник ABC в нем прямая BD перпендикулярно AC (т.к. это высота)
-MD перпендикулярно AC
-BD перпендикулярно АС
-MD и BD пренадлежат плоскости MBD
-AC пренадлежит плоскости АСМ
Из этих 4х пунктов следует, что плоскость АМС перпендикулярно плоскости DMB
Лайк кста
Аай! Этот сайт сбросил все написанное только оттого, что я уходил от компа! Придется заново писать!( Хоть бы предупредил кто, что тут такая.. неудобность(
Ну, да ладно, приступим:
Назовем трапецию:
АВСД. При этом АВ и СД - стороны. АД и ВС - основания. На середине стороны АВ точка К, на середине стороны СД - точка Н. Соединим их отрезком КН. Давайте заодно сразу опустим из В на АД высоту трапеции, назовем получившуюся точку Р. Соединим карандашиком В и Д. Вот и весь рисуночек.
Теперь условия проговорим уже с учетом названий точек:
АД - диаметр описанной окружности,
АВ=СД=4√2,
КН=14см.
Высчитать надо длину АД - ее половина как раз и будет искомым радиусом окружности.
Легко показать, что треугольники АВР и АВД - не только оба прямоугольные, но и подобные. Нам в них известны длины:
АВ=4√2 - это гипотенуза для треугольника АВР и короткий катет для АВД;
РВ=КН=14см (легко показать-посчитать, что это равенство верно - надо ли?) Это часть гипотенузы для АВД.
Вот и все, что нужно. Можно составлять пропорцию:
АВ так относится к АР, как АД относится к АВ.
Теперь предстваим АД как сумму АР и РД - и можно начинать считать:
АВ/АР=(АР+РД)/АВ
Подставляем значения:
4√2/АР=(АР+14)/4√2
умножаем обе стороны на 4√2:
32/АР=АР+14
теперь обе стороны на АР:
АР в квадрате+14АР=32
Не знаю, как это тут посчитать - даже про вторую степень только буквами могу )) , но и так очевидно, что АР=2
А это значит, что АД=2+14=16
А радиус окружности - половина АД. т.е. 16/2=8см.
Чего и нужно было!
Ура!)
Найдем короткую диагональ из теоремы косинусов:
d^2 = a^2 + a^2 - 2a*a*cos 30 = 2a^2 - 2a^2*√3/2 = a^2*(2 - √3)
d = a*√(2 - √3) = 20√(2 - √3)
Если один угол равен 30, то второй, смежный, равен 180 - 30 = 150.
Найдем длинную диагональ
D^2 = a^2 + a^2 - 2a*a*cos 150 = 2a^2 - 2a^2*(-√3/2) = a^2*(2 + √3)
D = a*√(2 + √3) = 20√(2 + √3)
Площадь ромба равна половине произведения его диагоналей.
S = D*d/2 = 20*20/2*√(2 - √3)*√(2 + √3) = 200*√(4 - 3) = 200