Пусть AC- диагональ осевого сечения цилиндра
<span>AD - диаметр основания</span>
<span>CD - высота цилиндра</span>
Треугольник ACD - прямоугольный
CD=AC*cos(60)=8*1/2=4
AD=AC*sin(60)=4*√3
Радиус основания равен 4*√3/2=2*√3
Площадь основания цилиндра равна
<span>pi*R^2=12*PI</span>
Площадь двух основания равна 24*pi
Площадь боковой поверхности цилиндра равна 2*pi*RH=2*PI*2√3*4=16pi√3
Площадь полной поверхности цилиндра равна 24pi+16pi√3
Высота опущенная из вершины такого угла равна 5-4=1 отсюда площадь равна (5+4)×1/2=4,5
Ответ:
Тут несколько вариантов(10,12,14)