Использовано определение двугранного угла, теорема о трех перпендикулярах, теорема Пифагора, свойство катета против угла в 30 гр., формула объема призмы
1. АВ=СД
ВС=АД по определению параллелограмма.
2. по условию ВС=2АВ., следовательно, АД=2АВ (из первого пункта)
Периметр равен 36.
Периметр - сумма длин всех сторон.
Периметр=АВ+ВС+СД+АД=36
АВ+2АВ+АВ+2АВ=36
6АВ=36
АВ=36/6=6.
Получается, что АВ=СД=6. АД=ВС=2АВ=2*6=12
ответ:12, 6, 6, 12.
Есть формула для нахождения медианы треугольника по трем сторонам:
Угол 1 + угол 2=180º
180º-150º = 30º (угол 3)
Угол 1 и 2 - смежные ( в сумме 180º )
Тогда 180º : 2 = 90º
Ответ : угол 1 и 2 - 90º ,угол 3 = 30º
СКОРЕЕ ВСЕГО ТАК,НО ЗА ПРАВИЛЬНОСТЬ НЕ РУЧАЮСЬ,потому что проходил это очень давно
Биссектриса AZ
1. Длины сторон
AB = √((-12-4)²+(-2-10)²) = 20
AC = √((-12+6)²+(-2+10)²) = 10
BC = √((4+6)²+(10+10)²) = 10√5
2. Биссектриса делит пересекаемую сторону на отрезки, пропорциональные прилегающим сторонам
BZ/CZ = AB/AC = 20/10 = 2
BZ = 2*CZ
BZ+CZ = 10√5
3*CZ = 10√5
CZ = 10/3√5
уравнение прямой СB в параметрической форме
x = -6+(4+6)t = -6 + 10t
y = 10
причём при t=0 получаем точку С, при t=1 - точку B
а при t = 1/3 - получим точку Z
x = -6 + 10*1/3 = - 8/3
y = 10
Z(-8/3;10)
и уравнение прямой AZ
(x+8/3)/(-12+8/3) = (y-10)/(-2-10)
или
<span>-3x/28 + y/12 - 47/42 = 0</span>