Решение задачи осуществляется путем составления пропорции для подобных треугольников.
x - высота фонаря.
11+2 - расстояние от столба до конца тени.
х:1,8 = 13:2
x = 1,8*13/2 = 11,7 м
У правильного треугольника все стороны равны и каждый из углов равен 60 градусов. Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрисс. Обозначим треугольник АВС, проведём биссектриссу угла А - АЕ и биссектриссу угла В - ВД. Они пересекутся в точке О. Биссектриссы правильного треугольника являются его высотами и медианами, значит ОД - медиана и высота и треугольник АОД - прямоугольный, сторона которого АД=1/2АС=17√3/2. Угол ОАД=60:2=30 градусов, а катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, т.е. ОД (это радиус вписанной окружности) = 1/2АО. Обозначим ОД - Х, тогда АО=2Х. По теореме Пифагора:
АО²=ОД²+АД² (2Х)²=Х²+(17√3/2)² 4Х²=Х²+867/4 3Х²=867/4 Х²=289/4 Х=17/2=8,5. Значит радиус вписанной окружности =8,5.
АЕ и АС1 пунктирные линии
1
Если известны величины двух углов произвольного треугольника (β и γ), то величину третьего (α) можно определить исходя из теоремы о сумме углов в треугольнике. Она гласит, что эта сумма в евклидовой геометрии всегда равна 180°. То есть для нахождения единственного неизвестного угла в вершинах треугольника отнимайте от 180° величины двух известных углов: α=180°-β-γ.2Если речь идет о прямоугольном треугольнике, то для нахождения величины неизвестного острого угла (α) достаточно знать величину другого острого угла (β). Так как в таком треугольнике угол, лежащий напротив гипотенузы, всегда равен 90°, то для нахождения величины неизвестного угла отнимайте от 90° величину известного угла: α=90°-β
АС найдём по теореме косинусов
АС² = АВ²+ВС²-2*АВ*ВС*cos ∠B = 81*2+36-2*9*√2*6*1/√2 = 198-108 = 90
АС = √90 = 3√10
Угол найдём А так же по теореме косинусов
BC² = АВ²+AС²-2*АВ*AС*cos ∠A
36 = 162 + 90 - 2*9√2*3√10*cos ∠A
36 = 252 - 108*√5*cos ∠A
54 = 27√5*cos ∠A
2 = √5*cos ∠A
cos ∠A = 2/√5
∠A = arccos (2/√5)
∠B = 180 - 45 - arccos (2/√5)