На рисунке осевое сечение шара с радиусом R и цилиндра с радиусом основания r и высотой h
Попробую выразить V цилиндра как функцию от r, для этого мне нужно h выразить через r
(2R)^2=h^2+(2r)^2; h^2=4R^2-4r^2; h=√(4*18.8^2-4r^2)=2√(18.8^2-r^2)
V=pir^2*2√(353.44-r^2)
V`=2pir(2√(353.44-r^2)-r^2/√(353.44-r^2)
приравнивая V`к нулю, получу
2√(353.44-r^2)=r^2/√353.44-r^2)
r^2=235.6; r≈15.35
h=2√(353.44-235.6)≈21.7
Площадь ромба равна произведению двух сторон на синус угла между ними
Осевое сечение со сторонами 8 и 10.
S ос. сеч. = 8*10 = 80(дм²)
Sбок.= 2πRH = 2π*5*8 = 80π(дм²)
Диагонали ромба взаимно перпендикулярны. Диагонали ромба делятся точкой пересечения пополам.
Если мы проведем диагонали ромба, мы получим четыре прямоугольных треугольника. Поскольку диагонали делятся точкой пересечения пополам, стороны этих треугольников (они же будут для них катетами) будут 8:2 = 4 см и 5:2 = 2,5 см.
Если мы найдем площадь одного из этих треугольников и умножим ее на 4, мы получим площадь ромба.
Находим площадь треугольника. Все наши треугольники прямоугольные. Площадь прямоугольного треугольника равна половине произведения его катетов, т.е.
S = 4 x 2,5 : 2 = 5 см²
Находим площадь ромба:
5 х 4 = 20 см²
Транспортир взять и сказать 30 градусов