Пусть исходная трапеция - АВСД,
Высота трапеции Н=2h, где h - высота каждой меньшей трапеции.
ВС=а, АД=b
<em>МК</em> - средняя линия исходной трапеции и равна (а+b):2
МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК
<u>S1- площадь трапеции МВСК </u>и равна произведению её высоты h на полусумму её оснований:
S1=h*(ВС+МК):2
S1=h*{а+(а+b):2}:2)=h*(3a+b):4
<u>S2 - площадь трапеции АМКД </u>и равна произведению её высоты h на полусумму её оснований:
S2=h*(AD+МК):2
S2=h*{b+(b+a):2}:2=h*(a+3b):4
Разность между площадями этих трапеций
S2-S1=h*(a+3b):4-h*(3a+b):4=
=(ha+3hb-3ha-hb):4=2h(b-a):4
2h=H
<em>S2-S1</em>=<em>H(b-a):4</em>
ΔBOK подобен ΔAOD (∠BOK=∠AOD как вертикальные, ∠DAO=∠BKO как накрест лежащие при параллельных прямых BC и AD)⇒BK/AD=9/12=3/4⇒OK/AO=3/4
ΔABK прямоугольный, по теореме Пифагора AK²=AB²+BK²
AK²=144+81=225
AK=15⇒OK=3x, AO=4x
15=3x+4x
15=7x
x=15/7⇒ OK=3*15/7=45/7 = 6/3/7
AO=4*15/7=60/7= 8/4/7
Пишешь:
Чертишь отрезок и всё это складываешь, а потом делишь:
-1-3=-4
4+7=11
4+11= 15
И делишь на 5
Ответ: длина отрезка 5 см
Обозначим стороны треугольника а, в, с против соответствующих вершин А, В, С.
Отрезок АВ₁ = АВ*cos 60° = с*0,5 = с/2.
Треугольник АНВ₁ подобен треугольнику ВВ₁С по двум взаимно перпендикулярным сторонам. Угол АНВ₁ равен углу С.
Искомый отрезок АН = АВ₁/sin (АНВ₁) = АВ₁/sin C = c/2sin C.
По теореме синусов с/sin C = а/sin А = 25/sin 60 = 25/(√3/2).
Подставим: АН = 25/(2*(√3/2)) = 25/√3 = <span><span>14.43376.</span></span>