<em>S трапеции = (а + в) : 2 · h</em>, где <em>а</em> и <em>в</em> - основания, <em>h</em> - высота.
<em>а = h</em>
<em>в = 2h, => S = (h + 2h) : 2 · h.</em>
<em>(h + 2h) : 2 · h = 54
</em><em>(h + 2h) · h = 54 </em>· 2
<em>h² + 2h² = 108</em>
<em>3h² = 108</em>
<em>h² = 108 : 3</em>
<em>h² = 36</em>
<em>h = √36</em>
<em>h = 6 </em>
<em>Ответ: высота трапеции - 6.</em>
Дано: L = 10 см, Д = 12 см.
Радиус основания R = Д/2 = 12/2 = 6 см.
Высота Н конуса равна:
Н = √(L² - R²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см.
Площадь боковой поверхности Sбок = πRL = π*6*10 = 60π см².
Площадь основания So = πR² = π*6² = 36π см².
Объём конуса V = (1/3)*So*H = (1/3)*36π*8 = 96π см³.
В треугольнике ABC ∠B - тупой, AD - медиана треугольника. Докажите, что ∠ADC > ∠DAC.
=============================================================
<h3>В треугольнике против бо'льшей стороны лежит бо'льший угол, а против бо'льшего угла лежит бо'льшая сторона</h3><h3>В ΔАВС: ∠В - тупой - по условию ⇒ АС - наибо'льшая сторона ⇒ АС > ВС</h3><h3>AD - медиана - по условию, BC = 2•CD ⇒ AC > 2•CD</h3><h3>Значит, в ΔACD: АС > CD ⇒ ∠ADC > ∠DAC, что и требовалось доказать.</h3><h3 />
1) В равнобедренном треугольнике углы при основании равны.
180-42=138, 138 - это 2 угла вместе, 138 : 2 = 69. угол А и угол С будут равны 69 градусов.
Знаю только первую, 0 - это же у тебя градус?
Ответы ниже смотри на фото.