Решение в приложении хрумпк
<span>Средяя линия равна (10 + 16) / 2 = 13</span>
Даны т<span>очки A(2;-4;1), B(-6;2;3) и D (4;0-1).
</span>Точка пересечения диагоналей делит их пополам.
Находим координаты точки О как середину диагонали ВД:
О((-6+4)/2=-1;(2+0)/2=1;(3-1)/2=1)) = (-1;1;1).
Точка С симметрична точке А относительно точки О (по свойству диагоналей параллелограмма).
Хс = (2Хо)-Ха = 2*(-1)-2 = -4,
Ус = (2Уо-Уа) = 2*1-(-4) = 6,
Zc = (2Zo-Za) = 2*1-1 =1.
Відповідь: - координати вершини C паралелограма (-4;6;1),
- координати точки перетину його діагоналей О (-1;1;1).
Пусть BE=3x, EC=x, тогда имеем уравнение: 4x=12, откуда х=3см, тогда BE=3*3=9см, AB=BE=9cм, т.к. треугольник ABE - равнобедренный. (за углами при основаниях) Тогда Р=12+12+9+9=42см
<span>если у ромба один угол 150, значит и второй тоже 150 из этого делаем вывод, что два остальные угла по 30 градусов. </span>
<span>Нужно провести одну диагональ между углами, который по 150 градусов. У нас получилось два равнобедренных треугольника. Берём любой, верхний угол у него, как нам уже известно равен 30 градусам, а остальные углы по 75 градусов. Делим этот равнобедренный на два прямоугольных и выражаем синус 75, который равен противолежащему катету делённому на гипотинузу. Выражаем из этой формулы противолежащий катет, то есть 10 * 0.9659 (sin75) и получаем грубо говоря 9, то есть вся диагональ равно 18 и находим вторую диагональ. Из квадрата 10 вычитаем квадрат 9 и умножаем это число само на себя, получается 19. И теперь находим площадь ромба по формуле гипотенузанамбер1 умножается на гипотинузунамбер2 и делится всё это чудо на 2, получается 171...</span>