Найдем гипотенузу треугольника по т. Пифагора , она равна 13 см. r=(a+b-c)/2, где a,b - катеты, с - гипотенуза, r=(5+12-13)/2=2 см
S(трап) = 1/2(осн1 + осн 2) * высота; основания есть, высоту надо найти.
Предлагаю, обозначения
<span>АВСД - данная трапеция, (рисуем картину), </span>
АВ=13 см
СД=15 см
ВС=5 см,
АД=19 см
S(ABCD)-?
Решение
<span>Пусть х см = отрезок АН, ( ВН - высота, опущенная из вершины В трапеции); тогда (19-5-х) = 14-х см = РД ( СР высота, опущенная из вершины С). </span>
Так как треугольник АВН ( уг Н=90*) и тр ДСР (уг Р=90*) прямоугольные и высоты в трапеции равны, то выразим высоту трапеции (ВН =СР) по теореме Пифагора из двух указанных треугольников, получаем уравнение:
169-х^2=225-(14-x)^2
169-x2=225-196+28x-x2
28x = 140
x=5 сторона АН треуг АВН
По т Пифагора к тр АВН найдем ВН, получаем:
ВН=√(169-25) = √144 = 12 см - высота трапеции
S(ABCD)= 1/2 * (BC+AD) * BH
S(ABCD) = 1/2 * 24 * 12 = 12*12 =<span>144 кв см</span>
Объем V=Soc*h
площадь основания(в основании равносторонний треугольник) Soc=√3*a²/4
значит V=√3*a²/4*h=√3*10²/4*12=300√3
Если продлить ВС то будет пересекать