Помогите мне пожалуйста очень нужно
<span>расстояние от центра ромба до стороны это радиус вписанной окружности
h = 2r = 2*13 = 26 высота ромба
S = ah = 54* 26 = 1404 cm2 площадь ромба</span>
1)Если боковые грани наклонены к плоскости основания под одним углом, то:
в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр. Вписать окружность можно
- в любой треугольник;
- в четырёхугольник, если суммы его противоположных
сторон равны;
- в правильный многоугольник,
таким образом, из указанных фигур нельзя вписать в прямоугольник.
2.!!! на рис. не обращайте внимания на числа.
1) Площадь полной поверхности пирамиды равна сумме площадей бок. пов-сти и основания, т.е. S полн= Sбок + S осн.
S бок = S1+S2+S3, где S1, S2, S3- площади ΔАВS, ΔВСS, ΔАСS cоответственно.
Т.К.грани равнонаклонены к проскости основания , то высоты боковых граней
равны.
2) Из Δ МНS- прям.: МS=MH/cos 60⁰, MH = r= (a+b-c)/2, где a,b,c- катеты и гипотенуза основания
МН= (3+4-5)/2=1 (!!! Прям. тр-к со сторонами 3,4,5- египетский)
MS= 2 , тогда S1=½·5·2=5 ; S2= ½·3·2=3 ; S3 =½·4·2=4
S бок= 5+3+4=12 (кв.ед.); S осн= ½·3·4=6 (кв.ед.)
S полн.=12+6= 18 (кв.ед).
1) Назовем углы A,B,C и D. Составляем уравнение. x+(x-50)=180. x=115. (допустим это был угол A), противалежащий ему угол, например, С будет так же = 115, а оставшиеся углы B и D будут равны по 65 соответсвенно.
2) Так же составляем уравнение. 2*3x+2*x=24. Решаем и получаем, что меньшая сторона = 3. ПРотивоположная сторона соответсвенно = 3. Оставшиеся противолежащие стороны = (24-3*2)/2=9.