у=4х+7, М(-2, 3), если графики не пересекаются, значит параллельны, тогда k=4.
Подставим данные в у=kx+b, найдём b.
4(-2)+b=3, b=3+8=11.
Уравнение :
у=4х+11
((a^(2/5)+a^(1/10))¹²
C(12)(6)(a^2/5)^6)*(a^(1/10)^6=
12!/(6!*6!) a^12/5)*a^6/10=
(7*8*9*10*11*12/(2*3*4*5*6)*a^(12/5+6/10)
=(7*2*3*2*11)*a³=924 a³
применяем метод математической индукции
1. проверяем при n=1
1³ = 1²*(1+1)²/4 = 1 верно
хотите сами проверьте для 2 и 3 (это не надо при примении ММИ)
2. допустим верно для n=k
3. докажем n=k+1
1³ + 2³ + .... + k³ + (k+1)³ = (k+1)²(k+2)²/4
k²(k+1)²/4 + (k+1)³ = k²(k+1)²/4 + 4(k+1)³/4 = (k+1)²(k² + 4k + 4)/4 = (k+1)²(k+2)²/4
доказали
верно для всех натуральных n
0,15х-0,6=9,9-0,3х+0,3
0,15х+0,3х=9,9+0,3+0,6
0,45х=10,8
х=10,8:0,45
х=24