Колониальные векторы это векторы имеющие одинаковое направление(другими словами на графике они параллейны)Ответ: да
Ответ: длина дуги равна 2*π*R*60/360=2*π*33/6=11*π см≈34,5576 см.
Объяснение:
Высоты ВК и СМ из вершин тупых углов трапеции делят ее на прямоугольник ВСМК и два равных прямоугольных ∆ АВК=∆C DM (по гипотенузе и острому углу при А и D).
<span>Углы при В и С в этих треугольниках равны 90°-60°=30°. </span>
АК=DM=24:2=12 ( по свойству катета, противолежащего углу 30°.
<span>КМ=ВС=8 ( т.к. ВСМК - прямоугольник) </span>⇒
<span> АD=AK+KM+MD=32 (ед. длины)</span>
<span>
</span>
Треугольники АВC и ADB подобны по двум углам (<BAC=<BCA, как углы при основании равнобедренного треугольника, <ABD и <BAD равны - дано). Из подобия АВ/AD=AC/AB. Или
18/12=АС/18. Отсюда АС=18*18/12=27.
Тогда DC=АС-АD или DC=27-12=15.
Второй вариант решения:
Треугольники АВC и ADB подобны по двум углам, значит <ABC=<ADB.
Пусть <ABC=<ADB=α.
Тогда по теореме косинусов из треугольника АВС:
АС²=АВ²+ВС²-2*АВ*ВС*Cosα. Или АС²=2*18²(1-Cosα).(1)
По теореме косинусов из треугольника АВD:
АВ²=AD²+BD²-2*AD*BD*Cosα. Или 18²=12²+12²-2*12*12*Cosα.
Отсюда Cosα= -1/8.
Подставим это значение в (1):
АС²=2*18²(1+1/8)=729. Или
АС=√729=27.
DC=АС-АD или DC=27-12=15.
Ответ: DC=15.
2) АО и СО - биссектрисы. Следовательно, в треугольнике АОС угол ОАС=углу ОСА = 25 градусов
Т.к. АО и СО - биссектрисы, то угол А=углу С=50 градусов, значит угол В=80 градусов