1) параллелограмм АВСД: АВ||СД, ВС||АД
AN⊥ABC и KC⊥AВC
Т.к. если прямая перпендикулярна к плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости (AN⊥AC и КС⊥АС)
Плоскость КВС⊥плоскости АВС, т.к. плоскость КВС проходит через прямую КС, перпендикулярную к АВС (согласно теореме: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны).
Аналогично плоскость ANД⊥плоскости АВС, т.к. плоскость ANД проходит через прямую AN, перпендикулярную к АВС.
Т.к. плоскости ANД и КВС, перпендикулярные к одной прямой АС, значит они параллельны.
2) Прямоугольный ΔАВС (∠В прямой)
Из точки S опустим перпендикуляр SO на плоскость АВС.
По условию точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этого треугольника, значит наклонные SA=SB=SC , а следовательно и их проекции на плоскость АВС ОА=ОВ=ОС. Значит О - центр описанной окружности около ΔАВС.
Т.к. в прямоугольном треугольнике центром описанной окружности является середина гипотенузы М, то значит точки О и М совпадают, тогда SM перпендикулярна плоскости АВС
Углы А и В прямые. СН - высота. АВСН - квадрат.
Треугольник СНД прямоугольный. Угол Д = 45, тогда угол НСД = 90 - 45 = 45.
ТР
ник СНД равнобедренный, СН = НД. Но СН - это сторона квадрата. Значит боковые стороны тр-ка равны сторонам квадрата. Поскольку тр-ник СНД прямоугольный, то его площадь равна половине пложиди квадрата, т.е.
если площадь тр-ка 16 см^2, то площадь квадрата 16 * 2 = 32 см^2.
S трапеции равна 16 + 32 = 48 см^2
Ответ 48 см^2
А) Если FA-15 и BF-8,то АВ=(FA+BF)=15+8=23. б) Точка K средина отрезка FB. FK=8:2=4, AK=(FA+FK)=15+4=19.
(2x+3x)*2=40
5x=20
x=4
2*4=8 cm 3*4=12 cm