Радиус окружности, проведенный в точку касания, перпендикулярен касательной.
Значит ОК⊥АВ, ОМ⊥АС и ОР⊥ВС.
Отрезки касательных, проведенных из одной точки, равны. Обозначим один отрезок гипотенузы х, а другой х + 14. Тогда
АК = АМ = х
ВК = ВР = х + 14
СМОР - квадрат, СМ = СР = 4.
Составим уравнение по теореме Пифагора:
АВ² = АС² + ВС²
(x + (x + 14))² = (x + 4)² + (4 + x + 14)²
(2x + 14)² = (x + 4)² + (x + 18)²
4x² + 56x + 196 = x² + 8x + 16 + x² + 36x + 324
2x² + 12x - 144 = 0
x² + 6x - 72 = 0
x = 6 или х = - 12 - не подходит по смыслу задачи.
АС = 6 + 4 = 10 см
ВС = 4 + 6 + 14 = 24 см
Sabc = 1/2 AC · BC = 1/2 · 10 · 24 = 120 см²
Сумма углов треугольника равна 180°
Из треугольника ABE:
∠B = 180 - 9 - ∠BAE
Сумма соседних углов параллелограмма равна 180°
Из параллелограмма ABCD:
∠B = 180 - 2 * ∠BAE (т.к. биссектриса AE делит угол А пополам)
180 - 9 - ∠BAE = 180 - 2 * ∠BAE
- ∠BAE + 2 * ∠BAE = 180 - 180 + 9
∠BAE = 9 (°)
∠BAD = 9 * 2 = 18 (°)
1 90 - 48 = 42
180 - 42 = 138
ответ 138
2 360 - 88 и делим на два = 136
180- 44 =136
Лови ответ, буду вопросы, пиши
Решение смотри на фотографии