<span>Площадь ромба равна половине произведения его диагоналей.Построим ромб ABCD, диагонали AC и BD, центр O.S = (BD * AC) / 2Надо найти BD и AC (диагонали ромба)Из условия, о том, что диагонали соотносятся 3:4, обозначаем их как 3x и 4x.Тогда ВО=2x, АО=1,5x.Треугольник ABO, теорема Пифагора: АВ^2=ВО^2+АО^220^2 = (2x)^2 + (1,5x)^2400 = 4x^2 + 2,25x^2400 = 6,25x^2x^2 = 400 / 6,25x^2 = 64x = 8BD = 4x = 32AC = 3x = 24S = (32 * 24) / 2S = 384 см</span>
боковое ребро легко найти по теореме пифагора так как оно- прямоуг-й треугольник
Ответ:
АВСD Паралелограм
Объяснение:
Так как DM=MB, тогда АМ=СN, так как АВ=СD
Диаметр круга радиусом 2 см совпадает с высотой, проведенной из вершины прямогоугла равнобедренного треугольника.Найдите площадь части круга, расположенной вне треугольника.
Сделаю свой рисунок.
Обозначим точки пересечения окружности с треугольником М, К,точку касания с основанием треугольника - D.
<u><em>Соединим все эти точки</em></u>.
Высота треугольника, как медиана прямоугольного треугольника, равна половине основания.
ВD=AD=DC
∆ АDВ= ∆ ВDС.
МК - диаметр окружности и средняя линия ∆ АВС,т.к. проходит через центр окружности.
МК=2 см
АМ=МВ, ВК=КС, МD=DK
МВКD - квадрат, <u><em>диагонали которого равны диаметру окружности 2 см</em></u>.
<em>Площадь квадрата равна половине произведения его диагоналей.</em>
<em></em>
S МВКD=2*2:2=2 см²
<u>S окружности</u> = πr²=4π
Площадь <u><em>четырех сегментов круга вне</em></u> квадрата МВКD равна
S окружности минус S МВКD =4π-2
Площадь сегментов вне треугольника равна половине площади четырех сегментов вне квадрата МВКD и равна:
<em>(4π-2):2=(2π-1 )см²</em>