Площадь всей поверхности состоит из 6 сторон.
Площадь одной стороны = 3^2=9
9•6=54
∠ABD+∠AED=180° (противоположные углы вписанного четырехугольника)
∠CED=180°-∠AED =∠ABD
△ABC~△DEC (по двум углам)
S(ABC)/S(DEC) =3 <=> AB/DE =√3 (площади подобных треугольников относятся как квадрат коэффициента подобия)
∪AB/2 -∪DE/2 =30° (угол между секущими)
По формуле длины хорды
AB= 2R sin(∪AB/2)
DE= 2R sin(∪DE/2)
∪DE/2=x
sin(x+30°)/sinx =√3 <=>
(sinxcos30° +cosxsin30°)/sinx =√3 <=>
√3/2 +ctgx/2 =√3 <=>
ctgx= √3 <=> x=30°
∪DE=60° => ∠DOE=60° => △DOE - равносторонний, DO=DE
r= DE =AB/√3 =15/√3 =5√3 ~8,66
Проведём радиусы ОА⊥АВ, ОС⊥ВД и ОЕ⊥ДЕ, а также соединим центр окружности О с точками В и Д. Образовалось две пары прямоугольных треугольников: 1-я пара ОАВ и ОСВ, 2-я пара ОСД и ОЕД.
ΔОАВ = ΔОСВ (сторона ОВ - общая; ОА = ОС = R-радиусу)
Отсюда следует, что АВ = ВС = х(обозначение х для простоты письма)
ΔОСД = ΔОЕД (сторона ОД - общая; ОЕ = ОС = R-радиусу)
Отсюда следует, что СД = ДЕ = у(обозначение у для простоты письма)
Нам нужно найти ДВ = ВС + СД = х + у
Длина ломаной АВДС = АВ + ВС + СД + ДЕ = 2х + 2у = 43,3см (по условию. Отсюда:
х + у = 43,3 : 2
х + у = 21,65(см)
Ответ ДВ = 21,65см
1)180-140=40 (градусов)- два угла по 40 градусов ,в основании
2) 180-(40+40)= 100 (градусов) угол,лежащий против основания
Ответ: 40,40,100
Сумма прилежащих к одной стороне параллелограмма равна 180.Один из углов 26+34=60, другой 180-60=120