Периметр=а+2*(а-3); а-сторона основания равнобедренного треугольника.
45=а+2*а-6;
51=3*а;
а=17
Ответ: сторона основания равна 17 см, боковая сторона равна 14 см.
Ответ:
Объяснение:
Диагонали точкой пересечения делятся пополам в точке О.
Найдем координаты О по формулам середины отрезка:
А( 1 ; 0) ,С( -5 ;6). О-середина АС ,
х(О)= ( х(А)+х(С) ):2 у(О)= ( у(А)+у(С) ):2
х(О)=(1-5):2=-2 у(О)= (0+6):2=3
О(-2 ;3)
В( 1;2) ,О( -2 ;3). О-середина ВД , найдем координаты т Д.
х(О)= ( х(В)+х(Д) )/2 у(О)= ( у(В)+у(Д) )/2
2*х(О)= х(В)+х(Д) 2*у(О)= у(В)+у(Д)
х(Д) = 2*х(О)-х(В) у(Д) = 2*у(О)-у(В)
х(Д) = 2*(-2)-1 у(Д) = 2*3-2
х(Д) = -5 у(Д) = 4
Д(-5; 4)
т.к. AB=BC, то точка D равноудалена от концов отрезков АB и BC => P ABCD=6.1*2+8.9*2=30
Особенность правильного шестиугольника в том, что радиус описанной вокруг него окружности равен его стороне. Отрезок АВ, соответственно, вдвое больше (поскольку внутренний угол правильного шестиугольника равен 120°, а А и В - середины его сторон), т.е. 6*2 = 12.
Ответ: а) 12