Преобразуем отдельно первое слагаемое:
8sinx*cos^3x=4sin2x*cos^2x=4sin2x*(1+cos2x)/2=(4sin2x+4sin2xcos2x)/2=2sin2x+sin4x.
Вернемся к выражению:
2sin2x+sin4x-2sin2x-2cos^2x+1=0
sin4x-2cos^2x+1=0
sin4x-2cos^2x+cos^2x+sin^2x=0
sin4x-cos^2x-cos^2x+cos^2x+sin^2x=0
sin4x-cos^2x+sin^2x=0
sin4x-(cos^2x-sin^2x)=0
sin4x-cos2x=0
cos2x=2cos2xsin2x
Делим на cos2x обе части
1=2sin2x.
Все, просто тригонометрическое уравнение, решение его:
x=pi*n+pi/12
x=pi*n+5pi/12.
- + - +
_______(-11)________[-7]________(-6)______
x∈(-11;-7]U(6;+∞)
Выпишем целые отрицательные решения неравенства:
{-10;-9;-8;-7;-5;-4;-3;-2;-1}
Всего их 9.
Ответ: 9
∠КАВ = ∠1
∠АВМ = ∠2
Так как сумма внутренних односторонних углов равна 180°, то:
∠1 + ∠2 = 180°
и 0,5∠1 + 0,5∠2 = 0,5*180 = 90°
Получили треугольник ΔАСВ с углами при основании, составляющими в сумме 90°. Значит, угол при вершине ∠АСВ = 90°.
Следовательно, биссектрисы внутренних односторонних углов, пересекаются под прямым углом, то есть взаимно перпендикулярны.
То есть покупатель покупает 4 пакета и получает 1 пакет бесплатно, 1 пакет стоит 40 руб, значит 5 пакетов обойдутся ему за 40*4=160 руб, отсюда находим за скока выходи ему один пакет, т.е. 160/5=32 руб