<span>Медиана треугольника — это отрезок, соединяющий вершину треугольника B с серединой противолежащей стороны этого треугольника АС, т.е. все медианы будут пересекаться в точке являющейся серединой отрезка АС.</span>
1.
1) Пусть ABCDA1B1C1D1 - прямоугольный параллелепипед, DC=4 см, AD=6 см.
2) Полную поверхность можно найти по формуле:
Sполн=Sбок+2Sосн.
Sосн=ab=4*6=24 (см²);
Sбок=Pосн*h=2(a+b)h=2*(4+6)h=2*10h=20h;
180=20h+2*24;
20h+48=180;
20h=180-48;
20h=132;
h=6,6.
DD1=6,6 см.
3) Диагональ прямоугольного параллелепипеда можно найти по формуле:
d²=a²+b²+c².
B1D²=DC²+AD²+DD1²=4²+6²+6,6²=16+36+43,56=95,56;
B1D=√95,56=2√23,89 см.
Ответ: 2√23,89 см.
2.
1) Для того, чтобы доказать параллельность плоскостей, можно воспользоваться признаком параллельности плоскостей:
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.
2) AF∈(AFM), FM∈(AFM), F=AF∩FM.
BK - средняя линия ΔAOF, значит BK║AF,
KD - средняя линия ΔFOM, значит KD║FM,
BK∈(BKD), KD∈(BKD), K=BK∩KD.
Таким образом, AMF║BKD.
У параллелограмма противоположные стороны попарно параллельны и равны, поэтому Вепараллельна FD иВЕ=FD, следовательно четырёхугольник ВЕDF- параллелограмм, так как у него противоположные стороны параллельны и равны.
Решение задания смотри на фотографии
Пусть меньший катет равен Х.
По Пифагору: (3Х)² - Х² = (4√2)² или 8*Х² = 32. Отсюда Х = 2. Тогда гипотенуза равна 6. Коинус угла равен отношению прилежащего катета к гипотенузе. У нас это 2/6 = 1/3. В треугольнике по теореме косинусов квадрат стороны равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:
М² = 2²+3² - 2*2*3*(1/3)= 13 - 4 =9 Отсюда медиана равна 3.
проверь арифметику!