ME=OE-OM(5+2),(-1-3)={7;-4}
вроде так
Ответ.<span> Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить.</span>
<span>Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: </span><span>∠∠</span><span>1 = </span><span>∠∠</span><span>2 и </span><span>∠∠</span><span>2 = </span><span>∠∠</span><span>3. По свойству транзитивности знака равенства следует, что </span><span>∠∠</span><span>1 = </span><span>∠∠</span>3. Аналогично доказывается и обратное утверждение.
<span>Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.</span>
Делим величины пополам и получаем 1)15 2)26 3)86