<em> </em><em>Задача про параллелограмм</em>
<em>Площадь треугольника равна половине произведения двух его сторон на синус угла между ними: S (abc) = (1/2)•BC•AC•sin∠ACB</em>
<em>В параллелограмме диагональ делит его на два равных треугольника ⇒ S (abc) = S (acd)</em>
<em>S (abcd) = S (abc) + S (acd) = 2 • S (abc) = BC•AC•sin∠ACB = 12,5•18•sin30° = 12,5•18•0,5 = 112,5</em>
<em>Ответ: 112,5</em>
<em />
Угол А=75° как и угол С=75°
Угол В= 180°-А=180°-75=105°.
Угол D=105, т.к. угол B и D противоположные, а противоположные углы а парал-ме равны по признаку
Площадь круга равна πD²/4, где D-диаметр окружности.
D²=а²+а²=2а²-где а-сторона квадрата.В то же время площадь квадрата равна а² и равна 72дм². Следовательно D²=2а²=72×2=144(дм²)
Sкруга=πD²/4=(π×144):4=36π(дм²)
так как сумма углов треугольника 180° , следовательно 180/(9+6+3)=10° одна часть
9частей будет 9*10°=90°
6частей 6*10°=60°
3 части. 3*10°=30°
ответ: 90°,60°,30°