По моему 13
Обозначим один угол α, тогда внешний угол 180-α
Так как сумма внутренних углов любого четырехугольника равна 180 (n-2), а по условию это 23 ·90, то
180 ( n-2) + 180-α= 23·90
23·90=22·90+90=11·180 +90
180·n-360+180-α=11·180+90
180·n=12·180 +α+90
если n=12, то α+90=0. α<0
если n=11, то 180+α+90=0 α<0
увеличиваем n
n=13 сократила на 180 ·12
180= α+90, α=90
n=14
360 = α+90 α=270 не может быть
n=15
540=α+90 α>360, чего быть не может
В квадрате ABCD сначала найдём длину диагонали AC,затем найдём площадь квадрата,построенного на этой диагонали.
в треугольнике ACD АС-гипотенуза,CD=AD=4см-катеты.
AC2=CD2+AD2
AC=корень из 4*4+4*4=корень из 32(см)
S квадрата ACMK=корень из 32 умножить на корень из 32
S квадрата ACMK=32(см2)
4. треугольники BMN и BAC подобны (кажется по 2 признаку :-) )
отсюда находим MN
BN/MN=BC/AC 15/MN=20/15 MN=(15*15)/20=11.25
5. один из углов равен 45°, значит треугольник прямоугольный равнобедренный - третий угол также равен 45° и катеты соответственно равны. Находим их по теореме Пифагора. 2*AC²=8² 2*AC²=64 AC²=32 AC=4√2
В прямоугольном равнобедренном треугольнике высота, проведенная к основанию, является также биссектрисой и медианой, т.е. делит гипотенузу пополам. Отсюда находим высоту СD по теореме Пифагора. AC²-AD²=CD² (4√2)²-4²=32-16=16=CD² → CD=4
6. угол А равен 60°, следовательно угол В равен 30°. По теореме синусов находим второй катет АС. АС/sin30°=BC/sin60° AC=(BC/sin60°)*in30°=6√2*0.5=3√2. По теореме Пифагора находим гипотенузу АВ. АВ²=AC²+BC²=18+36=54 AB=√54=√9*√6=3√6
Площадь прямоугольного треугольника равна половине произведения катетов, т.е. S=0.5*(6*3√2)=0.5*18√2=9√2
Высоту, опущенную из вершины С (например CD), можно найти из другой формулы нахождения площади треугольника: площадь треугольника равна половине произведения стороны треугольника на высоту, опущенную на эту сторону, т.е. S=0.5*AB*CD 9√2=0,5*3√6*CD Отсюда CD=9√2/(0,5*3√6)=2√3
Кажется равны 90 градусов
По свойству вписанного угла ∠АВС = 0,5 ∠АОС
По условию: ∠АВС = ∠АОС - 60°
0,5 ∠АОС = ∠АОС - 60°
0,5 ∠АОС = 60°
∠АОС = 120°
Ответ: центральный ∠АОС = 120°