Длина средней линии равна половине длины стороны, которой она параллельна.
Значит, длины средних линий равны 10/2=5 см, 12/2=6 см и 15/2=7.5 см.
По теореме Пифагора находим диагональ основания и диагональ боковой стороны
1) AC1+DA1+B1B+BA =?
а) BA+AC1=BC1.
б) B1B+DA1=D1D+DA1=D1A1.
(так как векторы равны: В1В=D1D)
BC1+D1A1= BC1+C1B1= BB1.
Ответ: AC1+DA1+B1B+BA =ВВ1.
2) Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).
ВА-В1С1 = ВА-ВС=СА.
(так как В1С1=ВС).
Ответ: ВА-В1С=СА.
Дано: прямоугольник ABCD, BE -- биссектриса, F -- точка пересечения диагонали AC и биссектрисы BE.
По условию: AE = 42 см, ED = 14 см.
Тогда AD = AE + ED = 42 + 14 = 56 см.
ВС = AD = 56 см
Прямоугольный треугольник ЕАВ является равнобедренным.
Поэтому AB = AE = 42 см.
По свойству биссектрисы: AF/FC = AB/BC = 42/56 = 3/4.
Диагональ АС =
см.
AF = 3/7 · AC = 3/7 · 70 = 30 см
FС = 4/7 · AC = 4/7 · 70 = 40 см
Ответ: AF = 30 см, FС = 40 см.
1равен 70 а остальные по 110