Дано: АВСД - трапеция, АВ=СД=18√3 см.<span>
ВС=13 см.
Найти S.
Решение: Проведем две высоты ВН и СК. Рассмотрим Δ АВН -
прямоугольный.
</span><span>∠АВН=150-90=60°, тогда ∠А=30°, а ВН=1\2
АВ=9√3 см. (как катет, лежащий против угла 30°)</span><span>
Найдем АН по теореме Пифагора:
АН²=(18√3)² - (9√3)² = 972-243=729; АН=√729=27 см.
ДК=АН=27 см
АД=АН+КН+ДК=27+13+27=67 см.
S=(13+67):2*9√3=360√3 cм²
Ответ: 360√3 см²</span>
Обозначим стороны ромба ABCD. АС=d1 - меньшая диагональ. BD=d2. Стороны четырёхугольника - EFKL. EF проходит через стороны AB и BC ромба. EF средняя линия треугольника ABC. Отсюда EF = LK = АС/2 = <span>d1/2</span>. FK - средняя линия треугольника BCD. Отсюда FK = EL = d2/2. Поэтому периметр
P = 2 * (EF + FK) = 2 * (d1/2 + d2/2) = d1 + d2.
При пересечении ромба диагоналями получается четыре одинаковых прямоугольных треугольника. Обозначим углы x и y. x+y = 90° т.к. сумма углов треугольника =180°. по условию x-y=30°. Составляет систему уравнений ;
{x+y=90;
{x-y=30;
сложением получаем:
2x=120;
x=60;
тогда x+y=90;
y=90-60=30;
Ответ: 30; 60.
Смотри рисунок в файл.
треуг. равнобедренный.
по св-ву биссектрисы она делит сторону на отрезки , пропорциональные сторонам угла, биссектрисой которого она является, т.е.
СМ/МВ=5/20=1/4
т.к. ВС=20, то СМ=4, МВ=16
по теореме косинусов имеем
20²+b²-2*20*b*cosα=16²
5²+b²-2*5*b*cosα=4²
умножая 2-е на 4 и вычитая из 1-го 2-е получаем
3b²=108
b=6