Сумма углов треугольника равна 180 градусам. И по условиям задачи угол А равен 2/3 угла АВС.
180=уголС+уголА+уголАВС
180=уголC+2/3 угла АВС+уголАВС
180=90+5/3 угла АВС
5/3 угла АВС = 180-90
5/3 угла АВС = 90
Угол АВС = 54 градуса
Угол А = 2/3 * 54 = 36 градусов
ВЕ - биссектриса по условиям задачи, следовательно угол АВЕ равен углу СВЕ и они равны 1/2 угла АВС, т.е. 54/2=27 градусов
Найдём угол ВЕА:
180=уголА+уголАВЕ+уголВЕА
Угол ВЕА = 180-уголА-уголАВЕ
Угол ВЕА = 180-36-27=117градусов
N=3
P3=P⇒a3=P/3
R=a3/2sin60=P/3:(2*√3/2)=P/3:√3=P/(3√3)=P√3/9
r=a3/2tg60=P/3:(2*√3)=P/(6√3)P√3/18
S=1/2R²*3*sin60=1/2*P√3/9*3√3/2=P/4
180-104=76
Т.к. Равнобедренный треугольник
Углы при основании равны
То есть один из углов =38
Пирамида правильная, значит в основании квадрат, а боковые грани - равные равнобедренные треугольники.
Sполн. пов. = Sосн + Sбок
Sосн = а²
Пусть SH - высота грани ASD, т.е. SH - апофема пирамиды.
Sбок = 1/2 Pосн · SH = 1/2 · 4a · SH
ΔASD равнобедренный, поэтому SH - высота, биссектриса и медиана,
АН = а/2, ∠ASH = b/2.
ΔASH: ctg(b/2) = SH / AH
SH = AH · ctg(b/2) = a/2 · ctg(b/2)
Sбок = 1/2 · 4a · SH = 2a · a/2 · ctg(b/2) = a² · ctg(b/2)
Sполн. пов. = a² + a² · ctg(b/2) = a²(1 + ctg(b/2))