АВ = 9 + 16 = 25 (см)
Пусть АС = х, тогда СВ² = 625 - х²
Выразим СД из прямоуг. тре-ков АДС и ВДС и составим равенство\%
СД = х² - 81
СД = 625 - х² - 256 = 369 - х²
х² - 81 = 369 - х²
2х² = 450
х² = 225
х = 15 (см) - сторона АС
СД = √(225 - 81) = 12 (см) - высота СД
Ответ: 12 см
Обозначим пирамиду АВСД. Д вершина. Проведём высоту основания ВЕ из точки В на АС и высоту пирамиды ДЕ. Точка О лежит на ВЕ и является центром вписанной окружности правильного треугольника(основание). Обозначим сторону основания а, а боковое ребро в. Тогда по условию а=в/3. ЕО=r= (корень из 3/6)*а=в/6корней из 3. Апофема ДЕ=(корень из 3)/2*в. Угол ДЕВ будет линейным углом искомого двугранного угла(АС ребро двугранного угла, ВЕ перпендикуляр к ребру). Тогда cosДЕО=ЕО/ДЕ=(в/6 корней из 3):(корень из 3/2)*в=0,11. По таблице находим угол равен примерно 84 градуса.
Начинается со слов "Угол МРК..."
решение.
всего частей в угле МРН 1+4=5.
105÷5=21 (градус) приходится на одну часть.
величина угла МРК =21 градус.
Расстояние от точки Р до НК равно длине перпендикуляра РС к НК. По теореме о трёх перпендикулярах проекцией РС на плоскость треугольника МНК будет высота МС треугольника МНК. По теореме Пифагора НК=корень из(МН квадрат+МК квадрат)=корень из ( (5 корней из 2) в квадрате+(5 корней из 2 ) в квадрате))= корень из (25*2+ 25*2)=10. Поскольку МН=МК. В равнобедренном треугольнике высота проведённая к основанию является одновременно медианой и биссектрисой. Следовательно НС=НК/2=10/2=5. Угол НМС=уголНМК/2=90/2=45. Тогда и уголСНМ=45. Значит треугольник НМС равнобедренный. Тогда МС=НС=5. Отсюда РМ=корень из (РС квадрат-МС квадрат)=корень из(169-25)=12.