Угол 1 равен углу PRO, т.к. Углы при основании равнобедренного треугольника равны. Уголы PRO и 2 рпвны как вертикальные.
Таким образом, углы 1 и 2 равны. Угол 1 равен 4/ градуса.
Ответ: 42 градуса.
Мы эту тему сейчас проходим,есть только 2 взаимного положения плоскостей- пересекающиеся и параллельные,доказать можно через аксиому:через прямую и точку можно провести плоскость,проведем прямую а параллельную плоскости альфа, так так альфа параллельна бетта,а пересекает бетта;используем другую аксиому:если 2 плоскости имеют общую точку,то они пересекаются,альфа и бетта имеют общую точку,а вот гамма может и не пересекать альфа,в любом случае у все 3 плоскостей общей точки не будет,т.к плоскости пересекаются попарно
......................................
Координаты центра окружности S(x;y)
Точка касания оси Ох М(x;0)
расстояния от точек до центра
AS
(x-5)² + (y-2)² = R²
x² - 10x + y² - 4y + 29 = R²
BS
(x-7)² + (y-4)² = R²
x² - 14x + y² - 8y + 65 = R²
MS
y² = R²
---
три уравнения, три неизвестных
x² - 10x + y² - 4y + 29 = R²
x² - 14x + y² - 8y + 65 = R²
y² = R²
---
x² - 10x - 4y + 29 = 0
x² - 14x - 8y + 65 = 0
---
2x² - 20x - 8y + 58 = 0
x² - 14x - 8y + 65 = 0
---
x² - 6x - 7 = 0
x₁ = (6 - √(36 + 28))/2 = (6-8)/2 = -1
x² - 10x - 4y + 29 = 0
4y = x² - 10x + 29
y = (x² - 10x + 29)/4
y₁ = (1 + 10 + 29)/4 = 40/4 = 10
x₂ = (6 + √(36 + 28))/2 = (6+8)/2 = 7
y = (x² - 10x + 29)/4
y₂ = (49 - 70 + 29)/4 = 8/4 = 2
Координаты центров и радиусы
(-1;10), R = 10
(7;2), R = 2
И сами уравнения
(x+1)² + (y-10)² = 10²
(x-7)² + (y-2)² = 2²
Равнобедренный ΔАВС: боковые стороны АВ=ВС и углы при основании <А=<В. Основание АС=25. Высота СН=21 проведена до боковой стороны АВ.
Из прямоугольного ΔАНС найдем по т.Пифагора АН:
АН²=АС²-СН²=25²-21²=184
АН=√184=2√46
сos A=АН/АC=2√46/25≈0,5426, значит <А≈56°46'
По теореме косинусов
ВС²=АВ²+АС²-2АВ*АС*cos A
АС²=2АВ*АС*cos A
АВ=АС/2cos A
АВ=625/4√46=156,25/√46≈23,04
<В=180*2<АА=180-2*56°46'≈66°28'
Ответ: ≈23,04 и ≈66°28'