Найдем уравнение прямой проходящей через точки А(3;12) и С(-6;0)
12=3к+с
0=-6к+с
Отнимем 9к=12⇒к=4/3
с=6к=6*4/3=8
у=4/3*х+8 или 4х-3у=24=0
найдем угол А по теореме косинусов
cosA=(AC²+AB²-BC²)/2AC*AB
AB²=(4-3)²+(5-12)²=1+49=50⇒AB=5√2
AC²=(-6-3)²+(0-12)²=81+144=225⇒AC=15
BC²=(-6-4)²+(0-5)²=100+25=125⇒BC=5√3
cosA=(225+50-125)/2*15*5√2=150/150√2=1/√2⇒<A=45
Найдем высоту BH опущенную на сторону АС
ΔABH прямоугольный,<A=45⇒<ABH=45⇒AH=BH
по теореме Пифагора 2BH²=AB²⇒BH=√AB²/2=√50/2=√25=5
В четырехугольник можно вписать окружность, если равны суммы длин противолежащих сторон. Если сумма оснований 14+8=22, то сумма боковых сторон тоже 22. У равнобедренной трапеции боковые стороны равны. Значит, каждая равна 22:2=11
Объяснение:
Площадь ромба равна половине произведения его диагоналей.
S=½d₁d₂=1\2 * 16 * 18 = 144 ед²
Сторона ромба
а=(√(18²+16²))\2=(√(256+324))\2=(√580)\2≈24,08\2≈12 ед.
Ответ: 144 ед², ≈12 ед.
<span> Сечение, ограниченное двумя равными образующими <em>АС и ВС,</em> угол между которыми <em>60°</em>, и хордой <em>АВ</em> - равносторонний треугольник, так как его углы при АВ равны 60°. </span>
<span>Образующая равна <em>а</em>. </span>
<span>Треугольник АОВ ( О - центр основания) - прямоугольный равнобедренный, его острые углы равны 45°. </span>
<span> <em>r</em>=АВ•sin 45°=a√2/2 иначе <em>a/√2</em></span>
<span>Формула площади боковой поверхности конуса </span>
<em>S=πrL</em>⇒
<span>S=<em>π•a</em></span><em>²</em><span><em>/√2</em></span>