Трудная задачка. Тут надо представлять площади треугольников. Во-первых, площадь трапеции равна сумме площадей треугольников ABK, BKC,CKD и AKD.Площади треугольников ABK и DCK соотносятся как 4:1, угол BKA= углу DKC(вертик.), площадь треугольника равна половине произведения сторон треугольника, образующих угол на его синус, тогда площадь треугольника KCD равна 0,5*4x( 4x - этоKD, x - это BK)*KC*sinA, площадь треугольника AKB равна 0,5*x*AK*sinA, сократив дробь, мы получим AK=KC, пусть это y. Площадь треугольника AKD равна 0,5*y*4x*sinA(синусы смежных углов равны), 2xysinA, мы знаем, что площадь CKD равна 0,5*4x*y*sinA, то есть площади обоих треугольников равны 96. Теперь с теми двумя: площади их будут равны 0,5*x*y*sinA, площади обоих равны по 26. А теперь складываем их площади, получаем площадь трапеции: 26*2+96*2=2(26+96)=244
Надо измерить угол ABE и ADE
Из свойства прямоугольного треугольника с углом 30 градусов, его катет равен x , а гипотенуза 2*х, тогда 2-ой катет х√3 (легко проверить по теореме Пифагора). Площадь прямоугольного треугольника х * х√3 / 2 = 722√3,
x² = 722 * 2
x = 38
Так как х - длина катета, лежащего против гипотенузы, то он и равен 38
Из вершины меньшего основания проводим перпендикуляры.
Рассматриваем два получившихся прямоугольных треугольника.
У них два катета равны (это перпендикуляры), гипотенузы равны (равные стороны равнобокой трапеции). По следствию из признака равенства треугольников (3-й признак - равенство треугольников по трем сторонам), два прямоугольных треугольника равны по гипотенузе и катету. А в равных треугольниках равны и соответствующие элементы.
Таким образом, углы при основании равны.