Высота H к стороне b равна Н b = 2S/b S=(Hb *b)/2
радиус описанной окружности = 13
цент описанной окружности лежит в точке пересечения срединных перпендикуляров
по теореме Пифагора найдем половину стороны b на которую опущена высота H b
0,5b = √(13^2 - 5^2) = √144 = 12 см b = 2*12=24 см
H b = 13+5=18 см
Площадь треугольника равна:
S=(Hb * b)/2 = (18*24)/2 = 18*12=216 кв.см
Ответ: 216 кв.см
Теорема: Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
Доказательство: Действительно, вписанная в треугольник ABC окружность с центром в точке O касается всех сторон треугольника по определению вписанной окружности. Это значит, что точка O удалена от сторон треугольника ABC на расстояние, равное радиусу вписанной окружности, то есть точка O равноудалена от сторон треугольника ABC. Следовательно, точка O равноудалена от сторон AB и AC, то есть лежит на биссектрисе угла A. Аналогично точка O лежит на биссектрисе углов B и C. Теорема доказана.
Мы знаем, что центр окружности равноудален от всех точек окружности (по определению) в том числе и от точек касание сторон треугольника. Также мы знаем, что каждая точка биссектрисы угла равноудалена от сторон угла. А точка пересечения биссектрис треугольника равноудалена от каждой стороны, т. к. равноудалена от трех пар сторон для кадой биссектрисы. Таким образом, в треугольнике есть только одна точка равноудаленная от всех сторон - это пересечение биссектрис треугольника. Поэтому центр лежит именно в этой точке.
Площадь квадрат равна S=
Если площадь увеличится в 16 раз, то сторона увеличится в 4 раза
Если площадь уменьшить в 9 раз, то сторона уменьшиться в 3 раза
h=SO=LO=30, Soc=(1/2)*NL*KM=1800(cm^2), V=(1/3)*Soc*h, V=(1/3)*1800*30=18000(cm^3)=18(дм^3