Угол KLM = 90. Угол KLP = 90-68=22. Угол PLN=угол RLN-уголKLP.
Угол РLM = 54-22= 32(гр)
Периметр это сумма всех сторон
узнаем боковую сторону равнобедренного Δ
24:3=8 2 бок. сторон по 8 и 1 неизвестная х
8+8+х=20
х=20-16=4
стороны 8; 8; 4
Для этого надо воспользоваться теоремой косинусов.
Смотрите рисунок во вложении
Поскольку в трапецию можно вписать окружность, то выполняется условие AB+CD=BC+AD или AB+CD=2BC (трапеция равнобедренная). По-этому, если обозначить AP=x и учесть свойство касательной к окружности, имеет место уравнение
Высота трапеции будет равна диаметру 2r данной окружности:
Поскольку AM=MB=FN=HN, то DH=FC=10:2=5 и по теореме Пифагора
Тогда из уравнения
получим, что AB=2x=8, a CD=AB+2DH=8+10=18 и средняя линия трапеции будет равна (AB+CD):2=13.
Пусть угол ВОС равен х° градусов, тогда угол COD в три раза больше.
∠BOC = x°
∠COD=(3x)°
По условию
∠COD : ∠AOB = 3:4, поэтому ∠AOB = (4х)°
∠СOB = ∠AOB =(4х)°
Поэтому ОВ - биссектриса угла AOD