Думать нечего!
<span>Назовём расстояние CH. Так как у нас AB перпендикулярно AD, и CH перпендикулярно AD ,то ABCH прямоугольник AB = CH = 10 см.</span>
Внешний <К=<О+<М
если<М=x,то 3х=76+х
3х-х=76°
2х=76°
х=38°
<М=38°
<K=180°-(38°+76°)=66°
Ответ:<М=38°;<K=66°
Ответ:
Нехай M і N — середини основ BC і AD рівнобічної трапеції ABCD
з перпендикулярними діагоналями AC і BD, K іL — середини бічних сторін AB і CD. Тоді KM || AC || LN, ML || BD || KN,
тому чотирикутник KMLN — прямокутник. Отже, KL = MN,
але KL — середня лінія трапеції а MN — висота.
Доведено, що висота дорівнює середній лінії.
Объяснение:
Параллелограмм АДСВ площадью=24, ДК=КС, СЛ=ЛВ, проводим диагонали АС и ДВ, диагональ АС делит параллелограмм на 2 равных треугольника, площадь АДС=площадьАВ=1/2площадьАДСВ=24/2=12, треугольник АДС, АК-медиана и делит треугольник на 2 равновеликих треугольника, площадьАДК=площадьАКС=1/2площадь АДС=12/2=6, треугольник АСВ, АЛ-медиана, площадь АСЛ=площадь АЛВ=1/2площадь АСВ=12/2=6,
площадь АКСЛ=площадьАКС=площадьАСЛ=6+6=12,
треугольник ДСВ площадью1/2АДСВ=24/2=12, КЛ-средняя линия треугольника параллельна ДВ=1/2ДВ, СН-высота на ДВ, площадь ДСВ=1/2*ДВ*СН=12, средняя линия КЛ делит высоту на 2 равные части=1/2СН, тогда площадь КСЛ=1/2*КЛ*1/2СН=1/2*1/2ДВ*1/2СН=1/8ДВ*СН, т.е площадьКСЛ=площадьДВС*2/8=12*2/8=3,
площадьАКЛ=площадьАКСЛ-площадьКСЛ=12-3=9