Применена теорема Пифагора
1)Начертить линейкой отрезок равноудалённый от точки на двух лучах угла.
2)Разделить его длину на 11.
3)Сделать углы.
cos(a)=-sqrt(3)/2
arccos(cos(a))=arccos(-sqrt(3)/2))
a=pi-arccos(sqrt(3)/2))=pi-pi/6=5pi/6
a прин. [0; pi]
sin a =1/2
arcsin(sin(a))= arcsin(1/2)
a=pi/6
a прин. [-pi/2; pi/2]
cos a = -sqrt(2)/2
arccos(cos(a))=pi - arccos(sqrt(2)/2))
a=pi - pi/4 = 3pi/4
a прин. [0; pi]
sin a =sqrt(2)/2
arcsin(sin(a))=arcsin(sqrt(2)/2))
a=pi/4
a прин [-pi/2; pi/2]
Площадь боковой поверхности цилиндра=2пr, а значит радиус=30. Отсюда следует, что площадь полной поверхности цилиндра=Sбок.+2Sоснов.= 60п+2*пr2=1860п(п-пи)